
Auto-tuning a High-Level
Language Targeted to

GPU Codes
By Scott Grauer-Gray, Lifan Xu, Robert

Searles, Sudhee Ayalasomayajula, John
Cavazos

GPU Computing

● Utilization of GPU gives
speedup on many algorithms
○ Parallel programming on GPU

using CUDA / OpenCL
environments

1/27

Directive-Based GPU Programming

● Compiler generates GPU kernels from

sequential code w/ pragmas

● Advantages of using directives:
○ Preserves serial implementation of code
○ Focus on highlighting parallelism
○ Eases interaction between scientists and

programmers

● Frameworks include HMPP and OpenACC

2/27

GPU Code Optimization

● Code transformations may improve

performance
○ Loop unrolling, tiling, permutation, fusion/fission,

which loop(s) parallelized

● Constant tweaking required to get best

performance
○ Resulting code may be brittle
○ Optimized code on one architecture may give poor

performance on alternate architecture

 3/27

Optimization Using HMPP
Workbench

● Auto-tuning w/ HMPP Workbench to
determine good transformations

● HMPP Workbench
○ Source-to-source compiler developed by CAPS

Enterprise
○ Directive-based framework targeted to GPUs
○ Transforms sequential code to GPU code
○ Contains pragmas for code optimization

4/27

HMPP Compiler

● Generates GPU
code from pragmas

● Used to explore

large optimization
space

5/27

Experimental Set-Up

● Goal: optimize code using particular

transformations via pragmas

6/27

Experimental Set-Up

● Unroll/tiling transformations using pragmas

#pragma hmppcg unroll 2, contiguous
for (i = 0; i < N; i++)
{

B[i] = A[i];
}

for (i = 0; i < N/2; i++)
{

B[2*i] = A[2*i];
B[2*i + 1] = A[2*i + 1];

}

#pragma hmppcg unroll 2, split
for (i = 0; i < N; i++)
{

B[i] = A[i];
}

for (i = 0; i < N/2; i++)
{

B[i] = A[i];
B[i + N/2] = A[i + N/2];

}

(a) contiguous unroll

(b) split unroll

#pragma hmppcg tile i:2
for (i = 0; i < N; i++)
{

B[i] = A[i];
}

for (i = 0; i < N/2; i++)
{

for (i_2 = 0; i_2 < 2; i_2++)
{

B[2*i + i_2] = A[2*i + i_2];
}

}

(c) tiling

7/27

Experimental Set-Up

● HMPP-annotated codes generated w/ python
script
○ Uses kernel code w/ placeholders for pragmas

GEMM code kernel w/ placeholders for pragmas 8/27

Experimental Set-Up

● Execution flow

Kernel Code w/
placeholders

Python script w/
desired optimizations

Code w/
HMPP Opts

Run HMPP Compiler

Optimized HMPP
Executables

9/27

Experimental Set-Up

● Initial experiments on
C2050 GPU
○ Fermi architecture
○ 448 cores

● CUDA 4.0
○ CUDA codes compiled w/

Open64-based compiler
○ OpenCL codes compiled w/

LLVM-based compiler
10/27

Experimental Results

● 2D Convolution

○ Dimensions: 4096 X 4096

11/27

Experimental Results

● 2D Convolution

○ Experiments using HMPP-generated CUDA and

OpenCL code

○ Improved performance using initial loop order w/

unrolling/tiling on inner loop

■ Alternate loop order increases runtime

■ Unrolling/tiling on outer loop increases runtime

 12/27

Experimental Results

● 2D Convolution

○ Results using contiguous and split unroll in inner loop:

13/27

Experimental Results

● 3D Convolution

○ Dimensions: 256 X 256 X 256

for (i = 1; i < NI - 1; ++i) // 0
{

for (j = 1; j < NJ - 1; ++j) // 1
{

for (k = 1; k < NK - 1; ++k) // 2
{

B[i][j][k] = c11 * A[i - 1][j - 1][k - 1]
+ c13 * A[i + 1][j - 1][k - 1] + c21 * A[i - 1][j - 1][k - 1]
+ c23 * A[i + 1][j - 1][k - 1] + c31 * A[i - 1][j - 1][k - 1]
+ c33 * A[i + 1][j - 1][k - 1] + c12 * A[i + 0][j - 1][k + 0]
+ c22 * A[i + 0][j + 0][k + 0] + c32 * A[i + 0][j + 1][k + 0]
+ c11 * A[i - 1][j - 1][k + 1] + c13 * A[i + 1][j - 1][k + 1]
+ c21 * A[i - 1][j + 0][k + 1] + c23 * A[i + 1][j + 0][k + 1]
+ c31 * A[i - 1][j + 1][k + 1] + c33 * A[i + 1][j + 1][k + 1];

}
}

}
 14/27

Experimental Results

● 3D Convolution

○ Results using different permutations
■ No unrolling/tiling

15/27

Experimental Results

● 3D Convolution

○ Experiments with unrolling/tiling in best permutations

○ CUDA results using (1, 3, 2) permutation:
■ With no unrolling/tiling: 21.2x speedup

■ With unrolling loop ‘3’ by a factor of 4 using ‘contiguous’ and
‘guarded’ pragmas: 27.2x speedup

○ OpenCL results
■ Best found config. used (2, 3, 1) permutation without unrolling/

tiling
■ 22x speedup

16/27

Experimental Results

● Polybench Benchmark Suite

○ Codes for linear algebra, data-mining, and stencils

○ Converted codes to CUDA / OpenCL using HMPP

■ Optimized codes using HMPP pragmas

■ Search space of many possible transformations

○ Constructed hand-written CUDA/OpenCL kernels

Available at http://www.cse.ohio-state.edu/~pouchet/software/polybench/

17/27

http://www.cse.ohio-state.edu/~pouchet/software/polybench/

Polybench Suite w/ CUDA

18/27

Polybench Suite w/ OpenCL

19/27

Best found transformations on
selected codes

Code Best Found Transformations
(CUDA)

Best Found Transformations
(OpenCL)

ATAX Reverse order of 2nd nested loop
set and tile 1st and 2nd loop w/
factor 4

Reverse order of 2nd nested loop
set and tile 1st and 2nd loops w/
factor 2

CORR Parallelize 8th loop rather than 7th
loop and tile 9th loop w/ factor 4

Parallelize 8th loop rather than 7th
loop and unroll 9th loop using
‘contiguous’ and ‘remainder’
options w/ factor 2

GEMM Unroll 3rd loop using ‘split’ and
‘guarded’ options with factor 3

Unroll 3rd loop using ‘contiguous’
and ‘guarded’ options with factor 8

20/27

HMPP Auto-tuning Results
Discussion

● Important to find best permutation for memory
coalescence

● Particular loops parallelized can be significant

○ Default HMPP configuration may not be optimal

● Applying unrolling to innermost loop often

contributes to best speedup
○ Unrolling outermost loop often hurts performance

21/27

Results on GTX 280 (Tesla)

22/27

Results on 9800 GT

23/27

Belief Propagation for Stereo Vision

● Computes disparity map from stereo set of

images

● Parallelize code available online using
HMPP
○ Optimize using HMPP pragmas
○ Compare to manual CUDA implementation

24/27

Results for Belief Propagation

25/27

Future Work

● Use additional code transformations

● Run experiments on additional GPU and

other many-core architectures

● Develop model to optimize any input kernel

26/27

Conclusions

● Developed optimized GPU kernels using auto-

tuning w/ HMPP
○ Codes available online at http://www.cse.ohio-state.

edu/~pouchet/software/polybench/GPU

● Improved runtime over default
○ Method works across architectures

27/27

http://www.cse.ohio-state.edu/~pouchet/software/polybench/GPU/index.html
http://www.cse.ohio-state.edu/~pouchet/software/polybench/GPU/index.html

