The Similarity Graph: Analyzing Database Access
Patterns Within A Company

Robert Searles
rsearles @udel.edu
Computer and Information Sciences
University of Delaware Newark, DE 19716

Abstract—A company’s database can reveal a lot about its
employees, and that information can be used to manage the
workforce, assign tasks, and create collaborations more effec-
tively. This paper proposes a framework to build a similarity
graph between analysts within a company using the SQL queries
they write. We show how we can represent SQL queries in graph
form, and we propose a method that can be used for calculating
pairwise similarity on these graphs. In order to guarantee that
this method will scale to large systems, we accelerated our
algorithm using OpenMP. The results we obtained revealed many
behavioral similarities between employees from different business
units within the company, and we achieved an almost linear
speedup, with a minimum of 75% efficiency across all cores.

I. INTRODUCTION

For a large company, effectively analyzing a database of
SQL queries is a difficult task. There is much to gain from
doing so successfully, but it is difficult to do in practice. The
queries in a large company’s database can reveal a lot about
the company’s workforce. One way to analyze a database is
to perform similarity analysis on the queries that are written
to access information in that database. It is challenging, but
identifying similarities between queries within a database can
help administrators better optimize the database and create new
collaborations between workers.

There are many challenges associated with trying to per-
form this type of analysis on a large database. First, we have
a lot of information to examine. We have a large number of
SQL queries, which were each written by an analyst within
the company. These analysts are broken up into departments,
or business units, as we prefer to call them. It is necessary
that we structure the method used to analyze this data in such
a way that we can cluster these queries according to their
corresponding analyst and/or business unit. More importantly,
this framework needs to be scalable for use with corporate-
level systems. This is extremely computationally intensive
because we must calculate the pairwise similarity of every pair
of queries in the database. We will propose a framework for
achieving both of these goals, and we will test it on a dataset
of SQL queries written by analysts within a large financial
institution.

There are many ways to represent SQL queries. One
elegant way is to represent them in the form of graphs. Instead
of using a traditional string-based representation of queries,
graphs allow us to represent the data in a more structured man-
ner, which is much more computationally friendly. However,
dealing with hundreds of thousands of these graphs is difficult.
Calculating pairwise similarity between every combination

Fig. 1. An example parse tree showing a simple SQL query: SELECT A, B
FROM C.

of these graphs at that scale is not trivial. Most similarity
measures for graphs have a computational cost of at least
n3 [1]. We will propose a method for overcoming these
computational requirements, and we will use the results we
obtain to construct a similarity matrix that we can then use to
observe similarities between employees within the company.
This will allow us to create a similarity graph, which shows
a collection of workplace trends and relationships between
analysts. This type of graph will use our similarity analysis
as the metric for comparing analysts in the company.

In order to form a good similarity graph, we first need
to define a useful metric of comparison. In this paper, we
decided to use a collection of SQL queries submitted by
employees from different business units across a company
to form our similarity graph. Specifically, we will use trees,
which are special cases of graphs that contain no cycles. SQL
statements can be decomposed and represented in a graph-
based form called a parse tree. We first constructed parse
trees for each SQL query using the open source software
tool ANTLR (ANother Tool for Language Recognition) [2]. An
example of these parse trees is shown in Figure 1. We then
developed a tree similarity algorithm that efficiently calculates
the similarity between SQL parse trees. The tree similarity
algorithm is inspired by the idea of a fast subtree kernel that is
used on graphs [3], [4]. The idea was to decompose graphs into
a set of fingerprints that represent substructures. Once these
fingerprints were calculated, the graph could be represented
by a vector of fingerprint counters, where counters represent
the occurrences of each fingerprint. The similarity between two
graphs is calculated as the inner product of the corresponding
two vectors.

We then use these pairwise similarity values to construct
a similarity matrix that will contain the pairwise similarities
of analysts within the company. We will examine each pair of
users and collect all the queries written by those analysts. We



can then use our framework to compute the overall similarity of
the two analysts based on their collections of queries. Finally,
we can observe these results by using visualization tools to
create figures that we can use to draw conclusions about the
data [5], [6]. Figure 2 depicts our framework’s pipeline.

The major contributions of this paper are the following:

1) We developed a framework to build a similarity graph
between analysts (who generated SQL queries) from SQL
queries, where each SQL query was represented by an SQL
parse tree. To the best of our knowledge, our paper is the first
to construct a similarity graph based on SQL queries people
submit.

2) To calculate parse tree similarities, we designed a tree
similarity algorithm that is based on a fast subtree kernel that
uses discrete labels.

3) We also accelerated our algorithm using OpenMP in
order to make it scalable for use on large systems with large
datasets.

The rest of the paper is organized as follows: Section 2
will illustrate the practicality of representing data in the form
of graphs. Section 3 describes the graph kernel we created to
calculate pairwise similarity of our data that has been converted
to discrete labels. Section 4 describes the processes we used
to create our similarity matrices for each set of data. Section
5 reports the results. Section 6 describes related work, and
we conclude in Section 7. The appendix following Section 7
explains the process that is used for relabeling the data. The
result of this method is the input to our graph kernel.

II. REPRESENTING DATA IN THE FORM OF GRAPHS

Representing data in a meaningful and useful manner is
not trivial. A major challenge that one faces when trying to
analyze large amounts of data is determining whether that
data is in a form they can work with, and if it is not, how
they can transform the data into a representation that is better
suited for the analysis they are trying to perform. In our case,
we examined SQL queries that were written by employees of
a large financial institution. These queries were presented to
us in text (string) form, which is not very computationally
friendly. We require that the representation of the data be
computationally friendly because our goal was to develop an
automated system framework for analyzing this data.

Our solution to this challenge was to represent these SQL
queries as graphs. Graphs are not only more aesthetically
pleasing, but they are also much more computationally friendly
than plain text is. Simply analyzing text would force us to
do more one-to-one comparisons on the data. For example,
checking two queries which are identical except for user data
(such as a name or an address) would not yield optimal results
because there is a difference in the characters contained in the
strings. If both queries contained a name, we do not need
to consider the exact characters in the name; we only need
to consider the fact that a name exists in general. Unlike
simple strings, representing queries in graph form allows us to
observe the structural qualities of the query. More specifically,
in this work we represented these SQL queries in the form
of trees, which are undirected graphs in which each pair of
vertices are connected by exactly one path. A tree is a special

case of a graph where there exist no cycles, i.e., there is no
path from any one node back to itself. We then relabeled,
or encoded, these trees and represented them as a series of
numbers corresponding to each sub-tree in the tree. We call
this type of representation a feature vector. Feature vectors are
particularly useful because there is a plethora of computational
algorithms and functions in existence that operate on them.

One way we can compare a pair of our encoded trees is
by using a graph kernel. The function of a graph kernel is to
compute the similarity of two graphs. Graph kernels are a core
component of our automated system and a major focus of this
report. Being able to calculate similarity between each pair of
our SQL queries enabled us to create a similarity matrix that
can be used to draw conclusions about the data. A similarity
matrix is simply a matrix containing all the pairwise similarity
values in our dataset. We used this matrix to visualize our data
and ultimately achieved our goal of observing potential collab-
orations within the company. Representing our data as graphs
ultimately allowed us to construct a visual representation of
the employees writing the SQL queries within a company
by calculating the similarities between these graphs of SQL
queries.

III. CALCULATING TREE SIMILARITIES

In this section, we show our method for calculating the
similarity between a pair of trees. This method takes as input,
two encoded trees. An encoded tree is one that has already
been parsed from a query and relabeled using the relabeling
process described in the appendix. Given a pair of trees in this
format, we are able to compare their elements and structure
and assign a normalized value, which denotes how similar the
two trees are.

Using the encoding algorithm, each tree is represented as
a set of numbers (a set of fingerprints). Since the similarity
between two trees is defined as the inner product of two vectors
of fingerprints, we can easily calculate this value from the set
of numbers. Formally, let T', T’ denote two ordered trees. The
similarity value between T and 7" is defined as follows:
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Let n,n’ denote a node in tree T,T"; max_h(n) denotes
the maximum height of the subtrees that root at node n.
E;(n) is the subtree rooted at node n with a height of . The
similarity algorithm counts the matching subtrees from height
0 to min(H, H') between T and 7', where H and H’ are
the heights of T and 7”. Note that H = max_h(rootT) and
H' = max_h(rootT"). Height-0 subtrees refers to the single-
ton tree node from the tree, i.e. Fo(n) =n and Ep(n’) =n'.

Additionally, the definition of a weighted similarity value
between two trees T and 1" is as follows:
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The notation is the same as the notation in Equation (1).
Note that the weighted value discards the common nodes
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Fig. 2. This is a depiction of the pipeline of our framework. Each node represents a step in the framework that we use. The first portion (Parsing) is talked
about in the appendix, and it provides the input to our framework. The fast subtree kernel then computes pairwise similarity between the SQL queries. The user
and business unit similarity portion groups the SQL queries by their corresponding users, and it calls the fast subtree kernel to perform the similarity calculations
on those groups of queries. The computationally intensive portion (Fast Subtree Kernel Similarity and User & Business Unit Similarity) is accelerated in order
to exploit parallel architectures. Finally, we visualize the results of our similarity calculations using third party data visualization tools.

between two trees (the case ¢ = 0) and boosts the similarity by
multiplying the height of the subtree when there are common
subtrees.

Although at this point we have successfully calculated a
weighted similarity for a pair of trees, we still need to make an
important consideration regarding normalization. All our trees
will not be the same height, nor will they contain the same
number of subtrees. We need a strategy for normalizing the
similarities that we calculated because if we simply calculate
weighted similarity, we will not have a uniform scale. We can
do this by calculating the weighted similarity of each tree to
itself and taking the square root of their dot product. We can
use this in conjunction with the weighted similarity of the
trees in question to produce a normalized similarity value. The
similarity between two ordered tree T and T’ is defined as the
normalized kernel shown below:

B kw (T, T")
Vewr(T,T) - kwr (T, T7)
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Figure 3 shows the encoding algorithm running on three
trees. First, the trees are relabeled according to their structural
qualities. A global alphabet is created from the dataset of
SQL queries and each entry is assigned a number which that
particular node in the tree is relabeled to. This leaves us
with a set of fingerprints that can be used to compare the
structures of different trees. The left trees’s fingerprints are
0,1,2,3,4,5,6), the middle one’s are (0,1,2,3,4,5,7), and the
right one’s are (0,1,2,3,4,5,8). We can get the corresponding
fingerprint counter vector for each tree. A counter vector is
simply a vector corresponding to the fingerprint vector of
a tree that keeps track of how many times each fingerprint
occurs in the given tree. The left, middle, and right trees
can be viewed as the global fingerprints (0,1,2,3,4,5,6,7,8)
with counter vectors (1,1,2,1,1,1,1,0,0), (1,1,2,1,1,1,0,1), and
(1,1,2,2,1,2,0,0,1) respectively. The similarity between trees
can be obtained by calculating the dot product of the trees’
corresponding counter vectors.

1) Decoding encoded numbers back into subtrees: When
comparing two trees using the encoding approach, it is neces-
sary to decode the numbers back to the original subtrees for
examination when we want to find out the structure (i.e., the
sub-trees) the two trees have in common. For any number that
encodes a subtree (say of height h), it is associated with a
string that represents the root of the subtree and its encoded
children (at least one with height of i — 1). The decoding is
performed in a way that subtrees with a smaller height are
decoded first. Later all subtrees with larger height can build
upon these subtrees of smaller heights.

OO OOO® O ®
Fig. 3. This figure gives us an example of the encoding process for three
basic parse trees. The first row represents three trees. The numbers assigned
to the nodes by the encoding algorithm are the lookup identification numbers
corresponding to that node’s entry in the global alphabet. The second and third
row show the state of each tree after the first two iterations of the subtree
encoding process. Note that in the last iteration, the roots of the three tree
are encoded to 6, 7, and 8 respectively. This means the algorithm considers
the left two trees different, otherwise they would be assigned the same labels

after the encoding procedure is complete. — 6, 7, and 8 represent the entirety
of their respective trees.

The visualization of the tree similarity algorithm on two
small trees is shown in Figure 4(a) and Figure 4(b). Here, we
see two full parse trees generated from two SQL statements.
The nodes highlighted in red make up the largest common parts
of the two trees, according to what our similarity algorithm
deems similar. Note that the original two SQL queries have
many common sub-strings.

IV. CONSTRUCTING SIMILARITY MATRICES FROM
PAIRWISE SIMILARITY VALUES IN A DATASET

In the previous section, we introduced an algorithm used to
calculate the similarity between ordered trees. We were able to
calculate the pairwise similarities between all SQL parse trees.
Also, since each SQL query is associated with the analyst who
submitted it, we were able to measure the overall similarity
between analysts from the pairwise similarities we calculated
Using our similarity analysis on SQL queries, we created a
similarity matrix and ultimately a graph to show the similarities
in terms of the SQL queries being submitted by analysts across
the company. Suppose the set M contains all the queries analyst
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(a) The parse tree of this SQL query: SELECT A, B, C AS c, functionl(D) AS d, E AS e, F AS f FROM tablel_name WHERE tablel_name.cl <
’STR’ and tablel_name.cl < STR’ AND (G="STR’ AND C IN ("STR’, 'STR’ )).
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(b) The parse tree of this SQL query: SELECT A, H, E, C, F, G, I, D FROM tablel_name WHERE tablel_name.cl < STR’ and tablel_name.cl <

’STR’ AND (I>function2(pl, ’STR’) AND I< function2(pl, ’STR’)).

Fig. 4. Two SQL parse trees that the similarity algorithm deems similar. The largest common parts of the two trees are part of the WHERE clause of the SQL

queries (nodes highlighted in red).

A submitted, and the set N contains all the queries analyst B
submitted. The similarity of analyst A to analyst B is calculated
using the following formula.

> ica max(sim(i, j)|Vj € N)
| M|

In the above equation, sim(i,j) calculates the similarity between
query i and query j. Additionally, we can calculate the simi-
larity of analysts B to analyst A using the following formula.

> jen max(sim(i, j)|Vi € M)
|N|

The similarity between analyst A and analyst B is calculated

as the average of sim(A — B) and sim(B — A). Each

SQL query is not only associated with an analyst, but also a

business unit the analyst is from. We can measure the overall

similarity between business units using the same approach

as above by considering all the SQL queries submitted from
within a business unit.

sim(A — B) = “)

sim(B — A) = (5)

While we are using this method to calculate similarities
between users based off of SQL queries they wrote, it is
important to note that this algorithm can be used in other
contexts as well. In this phase, we calculate a similarity
between two users. These users are identified by a group
of parse trees representing the queries they submitted. Those
parse trees represent SQL queries in this case, but this same
method can be used in other contexts as long as the data is
represented in the form of trees.

A. Complexity Analysis

For a given dataset containing U users and () total query
subtrees, the worst-case complexity of the algorithm used to
calculate the similarity between two given users (shown in
Algorithm 1) is given by the following equation: O (U, Q) =
U? - Q*. This is because we have to compare each user with
every other user in the company, and in order to compare two
users, we must examine all the subtrees of queries they wrote.



Furthermore, the implementation indicates that every subtree
must be compared to every other subtree. Since the number of
users is most likely relatively small compared to the number of
subtrees, the subtree comparison dominates the computation.

B. Hardware Acceleration

Since the number of subtrees dominates the computation,
scalability is an important consideration to be made. The algo-
rithm was modified from its original state to support OpenMP-
based parallelization. Every user similarity is computed in
parallel. To account for different quantities of work-size, the
work items are sorted from largest size to least. This sorting
allows for larger tasks to execute first while the smaller tasks
will eventually fill in any available processing time with the
ultimate goal of completing execution at the same time. An
additional version of the OpenMP code was generated to
further exploit parallel architectures. This implementation was
able to exploit nested parallelism by not only parallelizing user
similarity but also query similarity.

C. Required Modifications

Parallelizing this type of algorithm presents two challenges.
The first is separating file processing from computation. If we
are going to utilize an accelerator or a multi-core processor of
some sort, we cannot read each subtree file as we require the
data. This would cause a bottleneck during kernel execution
because threads would have to wait for the data they require if
it was not already present, and therefore, the data required by
that accelerator should be put in the device’s global memory
before computation begins. This issue was solved by creating
a lookup table for each file name and loading all of the
files before computation. This is important because many
large clusters and super computers that exist today utilize
accelerators as their main computational tool.

The other challenge is presented when we start to analyze
the query similarity algorithm. We notice that some values
are used repeatedly for a given subset. The algorithm will pre-
compute the self-similarity of every subtree and store the result
in a lookup buffer. This results in less redundant computation,
therefore reducing the total number of cycles required for user
similarity evaluation.

Algorithm 1 This algorithm goes over the overall execution
preparation for computing user similarity.

fileMap < Map filename
queries < read all query files
total < userCount * (userCount - 1)
runs < {}
for ¢ in total do

runs; <— current run configuration
end for
sort runs
for r in runs do

U, <— compute user similarity
end for

When we begin execution, we simply read all the subtree
graph files in our dataset instead of reading them individually
on the fly based on which users we are currently looking at. We

Business Unit Name Unit Number Queries Written
INF-IT 1 10178
OTH-BLK 2 35
OTH-IT 3 10190
FS:BEM 4 50
RSK 5 17500
CSD 6 1826
MKS 7 3292
OTH 8 750
FIN 9 351
MSS 10 335
ACT 11 15
PTR 12 228
BIZ 13 148
FRD 14 1083
ORI 15 1621
CMS 16 29
UNKN 17 1509
CEX 18 1
CPR 19 68
GLB 20 366
HNW 21 42
PIO 22 38

TABLE 1. DATASET 1: 49,655 QUERIES. THIS IS A LIST OF BUSINESS
UNITS AND HOW MANY QUERIES EACH UNIT WROTE. UNIT NUMBER
SHOWS WHICH NODE EACH UNIT CORRESPONDS TO IN FIGURE 6.

Business Unit Name Queries Written
CDW-IT 107112
FRD 16069
OTH 11641
INF-IT 4774
RSK 647490
OTH-IT 646

TABLE II. DATASET 2: 787,732 QUERIES. THIS IS A LIST OF
BUSINESS UNITS AND HOW MANY QUERIES EACH UNIT WROTE.

load all of these files into a hash table, and we index them by
their file name (which is simply their encoded graph number).
Then, when the algorithm is processing a pair of users, it can
load the trees it needs for that pair from the hash table, rather
than loading it from disk.

V. RESULTS
A. Experimental Setup

Our experiments were run on a machine with 16 GB of
memory and 2x AMD Opteron 6320 CPUs, which have 8
cores per CPU clocked at 1.4 GHz. We ran experiments on
Dataset I multiple times, each time with a different number
of cores in order to assess the scalability and efficiency of
our algorithm. We ran our user similarity algorithm across a
single core, 4 cores, 8 cores, and 16 cores, and we achieved
speedups of 1.0x, 4.0x, 7.3x, and 12.3x (respectively), as
shown in Figure 5. As can be seen by the graph, the algorithm
is quite scalable (each added core yields a significant speedup),
and it maintains over 75% efficiency in all cases as shown
by Figure 5. Efficiency refers to the performance that was
achieved relative to the theoretical maximum computational
ability of the device. For example, theoretically if we had a
device with 16 cores, we could achieve a 16x speedup over
sequential code. This would be optimal efficiency, but it is
impossible in practice because of different factors, such as data
transfer and synchronization across cores, that create overhead.
The more cores you introduce into a system, the more potential
overhead you incur. In our case, we maintained just over 76%
efficiency when running on 16 cores.



B. Analysis of Results

Figure 6 shows two graphs generated from calculating
the similarity values between employees. Both graphs include
nodes representing each of the 427 users that submitted queries
in our sample set of 49,655 SQL queries (Dataset I). Nodes
are colored and clustered according to which business unit
they are a part of. Figure 6(a) shows edges between users
who have a similarity value between them of 0.5 or greater.
Figure 6(b) shows edges between users who have a similarity
value between them of 0.8 or greater. By looking at the edges
that we generated, we can see that there are a lot of similar
SQL queries being written by users that exist in different
business units, but it is hard to draw insight from a similarity
graph when there are many edges between users (which seems
to be the case in Figure 6(a)).

One way we can circumvent this analytical obstacle is to
look at business units as a whole before examining individual
users. We can do this using a graph like Figure 7, which is
generated by examining the overall similarity between business
units as a whole (comparing the collection of users within one
business unit to the collection of users in another). We can first
look for thick edges (which represent a high similarity value
between units as a whole). For example, if we take a look at
unit 14 in Figure 7, we can see that it has thick edges running
to both unit 5 and unit 8. This tells us that those are the units
most similar to unit 14, and we can then dive down to the lower
level and examine similarities between the individual analysts
in unit 14 and analysts in units 5 and 8. This information
could prove quite useful in helping link up these people that
may have never met before. Ideally, new collaborations within
the company will be created because of this information.

We examined metrics other than just pure user similarity
as well. Another metric we examined is betweenness centrality
(or the measure of a node’s centrality in a connected graph).
Centrality is equal to the number of shortest paths from all
vertices in the graph to all other vertices that pass through
the node in question. As mentioned previously, Figure 7 uses
one node to represent each business unit as a whole. Each
node corresponds to a business unit that had analysts that
submitted queries contained in Dataset I. Edges still represent
similarity between nodes (calculated using Equation (4) and
(5) on business units), so we can examine similarities across
entire business units. The difference in this graph from the user
similarity graphs mentioned previously is that node sizes in
Figure 7 represent the betweenness centrality of that particular
unit. The bigger the node is, the more central the business unit
is in the company. This is interesting because we can see that
certain units (such as unit 5) have a very high centrality value.
This means that the work they are doing is somewhat similar
to that of many other business units in the company.

Figure 8 also uses node size to represent the betweenness
centrality of the given node. Nodes in this graph represent
individual analysts that submitted queries in Dataset II. We
can conclude from examining this graph that the higher an
analyst’s centrality value within the workforce is, the more
similarities they have with other analysts. In Figure 8, for
example, analysts 54, 78, and 92 have the highest centrality
values, which means that all 3 of them are writing queries that
are similar to the queries written by many other analysts in
the company. This can be useful for workforce management
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Fig. 5. This graph represents the parallel speedup and efficiency of our
similarity algorithm. We can see that we continue to see a performance
increase with each additional core. While there is some overhead because
of data transfer and synchronization, we maintain good overall efficiency.

because they can view these types of employees as versatile
employees that should be able to work productively with a
large portion of the other analysts in the workforce. This graph
doesn’t dive as deep into examining how similar an analyst is
to another individual analyst, but it does show us how similar
the analyst in question is to his or her peers in a general
sense. Combining this metric with our individual similarity
metric gives a workforce’s manager useful information that
can help them create effective collaborations/teams within their
workforce in order to obtain maximum overall efficiency.

We can also use a heat map (as shown in Figure 9) to
show us individual user similarity along side of business unit
similarity. Analysts on the X and Y axes are sorted according
to the business unit they are a member of. This means that
points near the diagonal represent a similarity value between
users that are in the same business unit, so we expect to
see some similarities here. People in the same business unit
typically work on similar things. However, we can see points
representing high similarities far from the diagonal as well.
These users are in different business units, but they seem to be
accessing the database in a similar manner. This makes it easy
for us to see that there are potential collaborations between
users that currently are not contained within the same business
unit. Because of the heat map being a visual representation of
a matrix, we can easily pinpoint exactly which analysts are
similar to each other.

VI. RELATED WORK

a) Graph Similarity: There are many algorithms that
measure the similarities between graphs [7]. Recently a subtree
kernel on graphs was proposed based on the Weisfeiler-
Lehman relabeling procedure to measure the similarity of two
graphs [3], [4]. The Weisfeiler-Lehman (WL) algorithm was
originally designed to test graph isomorphism [8], but it was
extended in the fast subtree kernel to compute the fingerprints.
Tabei and Tsuda [9] used the same idea combined with a
new data structure to search similar graphs from massive
graph datasets efficiently. In these applications of the WL
algorithm, the inputs were undirected graphs. If the inputs
were rooted and ordered trees, the fast subtree kernel would
have some limitations, as described in Section 2. Also, the
relabeled sub-structures of undirected graphs (the fingerprints)
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Fig. 6. A sample similarity graph we created by analyzing the similarities
between SQL queries written by analysts. The vertex represents an analyst
from a certain business unit. An edge linking two analysts means they wrote
similar queries. The thickness of the edge represents the similarity. Figure 6(a)
filters out all edges between analysts whose designated similarity metric is less
than 0.5, and Figure 6(b) does the same with values less than 0.8.

cannot be decoded back to the original structure because of
graph isomorphism. In our work, we used the same idea of
fingerprints, but we modified the Weisfeiler-Lehman algorithm
to deal with rooted and ordered trees. There are also tree
kernels that measure the similarity of two trees, such as
the PT kernel [10], the ST (SubTree) kernel [11], and the
SST(SubSetTree kernel) [12]. Matrino’s work [10] extended
the PT kernel to work on DAGs, and by decomposing graphs to
DAGs, they came up with a new kernel based on the PT kernel
for graphs. Moschitti [13] combined the ST Kernel and the
SST kernel to experiment on predicate argument classification
in natural language. We proposed a similarity measure based
on the Weisfeiler-Lehman algorithm that allows us to decode
the relabeled subtrees in addition to calculating similarity.

Fig. 7. A similarity graph we created that uses a single node to represent
each business unit. The size of the node represents the betweenness centrality.
Edge thickness represents the similarity between units. Edges representing a
similarity value less than 0.175 were filtered out to reduce clutter.
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Fig. 8. This graph represents the betweenness centrality value for each user
in Dataset II. Node size and edge weight correspond to the centrality of the
analyst in question. The larger the node, the higher that analyst’s centrality in
the workforce.

b) Network Analysis: People are linked together in
a variety of ways. There are many real-world examples of
networks, such as telephone call graphs, coauthorship and
citation networks of scientists, the exchange of email message
within companies, etc [14], [15]. Magnusson [16] developed
a model used to analyze telecommunication networks for the
purpose of detecting influential subscribers within the network.
Their tool, called "Hadoop’, was also compared with the more
commercial Neo4j graph database. Our work also aims to
detect influential people within a business, but we take it
a step further and try to connect influential workers with
similar workers by looking at how similar their queries are
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Fig. 9. This heat map shows us the similarity between each of our analysts in
Dataset II. Analysts are sorted and grouped according to the business unit they
belong to. Brighter colors (red) represent a high similarity between analysts,
while neutral colors (yellow) represent a low similarity value between analysts.

overall. Centrality is also considered in our results which could
later be extended by work focused on solving the problem
of computing centrality measures in large social networks by
using parallel and distributed algorithms [17].

The connections between people on social networking sites
like Facebook, LinkedIn, and Twitter are also something we
can observe. To better understand the interaction between
people, database analysis techniques are often used to study
the characteristics of social networks. Link prediction and link
recommendation are techniques that we see used all the time
[18]. At MySpace [19], a friend recommendation engine was
designed and deployed to connect more people by leveraging
personalized information such as user profiles, favorite songs
in common between users, etc. Other work took advantage of
frequent appearances of people in uploaded personal photos to
infer friendship between them [20]. Cha and Cho proposed the
use of a topic model to differentiate the nodes by popularity
so that more relevant friend recommendations could be made
within a social network [21]. These types of studies are directly
related to our strategy, but instead of focusing on who we think
you should be friends with, we are looking at what people
would be the most productive together in a work environment.
Examining something such as which people like the same kind
of music is actually quite similar to looking at what kind of
queries two people write. A library of music is basically just
a huge database of files. We are looking at which people are
utilizing our database in a similar manner, which is almost

exactly the same as what these social networking sites are
doing when comparing things like favorite music, movies, and
television shows in order to make friend recommendations.

Many research projects involved analyzing the structural
properties of social networks as well. There are studies on
people’s culture and tradition being done by comparing their
house layouts, represented by graphs [22]. They applied cen-
trality measures to unveil the differences between which part
of the house people view as important. In our paper, we study
the differences of business units and analysts by measuring
their betweenness centrality in addition to just simply looking
at similarities between pairs of users. We used Gephi [5] and
Graph-tool [6] to visualize the results. Gephi is an open-source
tool that is capable of visualizing various kinds of graphs,
including social network graphs. To calculate betweenness
centrality, Gephi implements the betweenness centrality algo-
rithm described in Brandes’s work [23]. Graph-tool is an open
source python module that is used for statistical analysis and
visual representation of graphs. Graph-tool also implements
the betweenness centrality algorithm [23].

VII. CONCLUSIONS AND FUTURE WORK

We have constructed a series of similarity graphs of em-
ployees using our sample set of SQL queries, and we created
an algorithm that was used to measure similarity between users
in that workforce. Using this algorithm, we were able to create
a visual representation of user similarity across the workforce,
and we also were able to calculate and visualize similarity
between business units as a whole, as well as the betweenness
centrality of the users in the company. The similarity graphs
of employees were derived from the similarities between the
SQL queries the employees wrote. We designed a scalable,
encoding-based algorithm to measure the similarity between
SQL queries, which takes advantage of multi-core architectures
to offset the cost of computation. With all this new knowledge,
we hope that new collaborative efforts will emerge within the
company in question.

In the future, we plan to extend this work by applying the
framework we created to other domains. Specifically, we plan
to adapt this technique in order to perform behavioral analysis
on malicious code with the goal of developing a system to
detect malware that is more effective than the current state of
the art.
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APPENDIX

The following work is part of a collaborative effort, and
it is placed in an appendix for this reason. In this appendix,
we will first introduce the original algorithm used to relabel
graphs and calculate graph similarities, and we will describe
the algorithm’s undesired behavior when running on ordered
trees afterward.



A. The Original Subtree Kernels on Graphs

The original subtree kernel iteratively constructs the finger-
prints of a graph based on Weisfeiler-Lehman’s procedure for
isomorphism testing [3], [4], [8]. The algorithm is shown in
Algorithm 2. In each iteration, each vertex and its neighbors
are represented by a string consisting of their labels in the
previous iteration (line 3). The string is then mapped to a
unique value also known as a fingerprint (shown in lines 4-
7). After H iterations, the graph is associated with a vector
of H|V| fingerprints because each vertex is relabeled once in
each iteration, and, eventually, every vertex will be associated
with H fingerprints. |V| is the total number of nodes in the
graph. With the vectors of fingerprints counters, a similarity
value on two graphs can be obtained by calculating the inner
product of the two vectors.

Algorithm 2 The Weisfeiler-Lehman Relabeling Process
1: for h=1— H do

2: for each vertex v in the graph do

3: cur_sub < labelToString(v & its neighbors)
4; if hashtable. find(cur_sub) then

5: label(v) « hashtable.get(cur_sub)

6: else

7: label(v) < f(cur_sub)

8: hashtable.insert(cur_sub, label (v))

9: end if

10: end for

11: end for

The subtree kernel is much faster than existing graphs
kernels (like random walk graph kernels [24]), and it preserves
information well using fingerprints [3]. However, for ordered
trees, the construction of fingerprints renders the calculation
of tree similarity biased toward the number of common fin-
gerprints generated at small h. We found that the number of
common leaves of two ordered trees dominated the kernel’s
output. This is due to the fact that without a specific adaptation
of the algorithm for use with ordered trees, the common leaves
will be taken into account during each iteration. Consider two
ordered trees A and B. Suppose tree A contains M occurrences
of node “NUM” and tree B contains N occurrences of node
“NUM”. In this case, the similarity metric would be at least
HxM=xN, where H is the number of iterations in Algorithm 2.
So, the original subtree kernel algorithm considers two trees
similar if they contain common leaves. In our data set of trees,
it is very common for two dissimilar trees to contain a large
number of common node labels, for example “(” and “,” etc.
Applying the subtree kernel directly on such a data set would
result in a biased and inaccurate similarity metric.

B. The Adapted Algorithm for Ordered Trees

In order to address the above limitation, we developed
an adapted algorithm that eliminates bias when calculating
the similarity between ordered trees. The improved algorithm
is still based on the idea of converting trees into sets of
fingerprints, but it changes the way these fingerprints are
calculated. To calculate the similarity between sets of trees, we
convert each tree in the set to a set of numbers, where each
number represents a unique subtree. Identical subtrees from
the set would be represented by the same number. In fact, for

a set of ordered trees, every fingerprint now corresponds to a
unique subtree encoded by a number. This is different from
the subtree kernel relabeling because in our adapted algorithm
these numbers can be decoded back to the original subtree.
The following describes how to calculate the fingerprints for
a set of trees.

Consider the set F' that consists of N trees. Let H be the
maximum height of the tree(s) in the set. Further, we denote
the total number of nodes in the set F' as |Vp|. The algorithm
that calculates the fingerprints of each tree in F' is shown in
Algorithm 3.

Algorithm 3 The Encoding Algorithm

1: for h=1— H do
2: next_number + 0

3: for each node n of the trees in the forest do

4: if n is not marked leaf then

5: cur_subtree < toStr(n & its children)

6: if hashtable. find(cur_subtree) then

7: label(n) < hashtable.get(cur_subtree)
8: else

9: label(n) « f(h,next_number)

10: hashtable.insert(cur_subtree, label(n))
11: next_number < next_number + 1

12: end if

13: if every child of n is marked as leaf then
14: mark n as leaf

15: end if

16: end if

17: end for

18: end for

According to how the algorithm works, during iteration h,
all subtrees of height h are encoded and added to the vector of
fingerprints; this can be easily derived by the induction method
(omitted).

In each iteration after the encoding is performed, the
algorithm collapses the tree by marking the nodes as leaves
if these nodes are coming to the front-edge of the tree (all
the children have been encoded in the previous iteration(s),
i.e. all the children have been marked as leaves). Note that
the height of a tree is limited, so the algorithm will terminate
when h becomes the same as H, in which case the whole tree
will be encoded to a number. In the orginal subtree kernel,
each node corresponds to H fingerprints. However, in the
adapted algorithm for ordered trees, the number of fingerprints
associated with a node is dependent on the height of the tree
and which level a node is at in that tree. An example of
encoding a simple tree is shown in Figure 10.

Figure 10 shows the process of encoding a set consisting
of only a single tree, but the process for a large set works
the same way. One important issue to address when encoding
subtrees is to ensure that the same subtrees are encoded to
the same number and each number corresponds to only one
tree (one-to-one mapping between a subtree and a number). To
achieve this, the algorithm maintains a counter (next_number)
in each iteration h to indicate how many subtrees (of height h)
have been encoded. When assigning new label numbers, the
number can be obtained by calculating: f (h, next_number) =
h *x C + next_number. Here, constant C' is chosen such that



leaf

leaf

h=2

Fig. 10. An example showing the procedure of encoding subtrees of a tree into numbers. In each iteration (h = 1, h = 2), all subtrees of height 1 (shown
in dotted rectangle) will be encoded to a number. In fact, each number generated in iteration h encodes a subtree of height h. For example, when h = 1, the
subtree consisting of nodes 2 and 3 is represented as “2 3” and is encoded as 5. When h = 2, the subtree “4 / 5” is encoded as 6. Since 5 encodes a subtree
of height 1, 6 actually represent the subtree of height of 2 (in this case the whole tree). Note that in each iteration only the nodes not marked as leaves are
eligible to be relabeled.

in any iteration, next_number would not become larger than
C. This way, we are certain that there will be no case where
the encodings of one iteration will collide with those in other
iterations. Therefore, C' can equal |Vp| as it is obvious that
the number of subtrees in any iteration is less than |Vg|. In
this case, next_number will be less than C in any iteration.
Note that within each iteration, the uniqueness is maintained
by a hash table. This concludes the appendix.
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