Accelerating Financial Applications on the GPU

Scott Grauer-Gray William Killian
Robert Searles John Cavazos

Department of Computer and Information Science
University of Delaware

SITYor
Py

Sixth Workshop on General Purpose Processing Using GPUs

Outline

© Introduction
@ QuantLib and Financial Applications
@ Directive-Based Acceleration
e Experiment Setup
@ Source Code Modifications
@ Compilation
@ Execution Environment
e Application Results
@ NVIDIA K20 Results
Q@ Auto-Tuning
@ Framework
@ Results
@ Alternate Architectures
© conclusion
@ Future Work
@ Final Notes

Introduction

Outline

© Introduction
@ QuantLib and Financial Applications
@ Directive-Based Acceleration

Introduction
°0

QuantLib and Financial Applications

QuantLib

@ Open-Source library for Quantitative Finance
@ Written in C++
@ Contains various financial models and methods
@ Models: yield curves, interest rates, volatility
@ Methods: analytic formulae, finite difference, monte-carlo

@ Financial applications optimized are particular code pathsin
QuantLib

Introduction
oce

QuantLib and Financial Applications

Financial Applications

Four financial applications selected for parallelization

| Application | Description | Precision |

Black-Scholes Optl.on pricing using Black-Scholes-Merton Single
pricing

Monte-Carlo Pricing of a single option using QMB (Sobol) Single
Monte-Carlo method

Bonds Bond pricing using a fixed-rate bond with a flat Double
forward-curve
Repurchase agreement pricing of securities

R D

epo which are sold and bought back later ouble

@ Each application is data-parallelized
@ Algorithm for each application is parallelized where possible

Introduction
0

Directive-Based Acceleration

Overview on Directive-Based Acceleration

@ Syntax comparable
to OpenMP

@ Annotates what code should
run on an accelerator

@ Focuses on highlighting main() {
parallelism of code <serial code>
#pragma acc region €———— Cc’ﬂﬁit'er
@ Preserves serial icompute intensive code>

implementation of code

@ Simplifies interaction
between scientists
and programmers

Introduction
oce

Directive-Based Acceleration

Directive-Based Programming Languages

OpenACC

@ Joint collaboration between CAPS Entreprise, CRAY, PGI, and
NVIDIA

@ Directive syntax near identical to OpenMP with added data
clauses

@ Introduces a kernel directive that drives compiler-assisted
parallelization

HMPP
@ Originally developed by CAPS Entreprise
@ Fundemental execution unitis a codelet
@ Provides fine-grain control for optimizations

Experiment Setup

Outline

e Experiment Setup
@ Source Code Modifications
@ Compilation
@ Execution Environment

Experiment Setup
[I}

Source Code Modifications

Source Code Modifications

@ Code flatten QuantLib C++ =- Sequential C code
@ Implementations derived from Sequential C code
@ Argument passing — Structure of Arrays

@ Verification: Compared all results to original QuantLib code
paths. All results were within 3 degrees of precision (10~3)

Experiment Setup
oce

Source Code Modifications

Code Flattening

// C++ code:
struct C {
int x;
void addFour() {
X += 43
}
15
struct B {
C myObj;
virtual void foo() = 0;
13
struct A : public B {
virtual void foo() {
myObj.addFour () ;
}
15
A 1inst;
inst.foo();

// flattened code:
int inst_x;
inst_x += 4;

// Alternative flattening:
int addFour (int x) {
return x + 4;

}

int dinst_x;
inst_x = addFour (inst_x);

Experiment Setup
[I}

Compilation

Compilation

@ Host code compiled with GCC 4.7.0

@ -02 flag used for serial

@ -03 -march=native flag used for OpenMP
@ OpenACC and HMPP compiled with HMPP Workbench 3.2.1
@ CUDA compiled with CUDA 5 Toolkit

@ OpenCL used NVIDIA driver version 304.54

Experiment Setup
oce

Compilation

Compile Workflow Using HMPP Workbench

@ HMPP Workbench used for HMPP and OpenACC code compilation
@ Target CUDA and OpenCL code generation

CAPS Many-core Compilers
Preprocessor Back-end Generators

Application source code Target source code CUDA

. OpenCL
Standard Compiler

Target compiler

Host application

Accelerated codelet library

CAPS Runtime Target driver

Many-core architecture
NVIDIA/AMD GPUs, Intel MIC

Experiment Setup
°

Execution Environment

Execution Environment

CPU — Dual Xeon X5530 (Quad-Core @ 2.40GHz) with 24GB
DDR3-1066 ECC RAM

GPU — NVIDIA K20c (2496 CUDA Cores @ 706MHz) with 5GB GDDR5
2.6GHz ECC RAM

NOTE: Also ran all experiments on NVIDIA C2050

Auto-Tuning Targets:

NVIDIA GPU Architecture | CUDA Cores

NVIDIA C1060 Tesla 240
NVIDIA C2050 Fermi 448
NVIDIA GTX 670 | Kepler GK104 1344

NVIDIA K20c Kepler GK110 2496

Application Results

Outline

e Application Results
@ NVIDIA K20 Results

NVIDIA K20 Results

Application Results
[Jelelelele)

Black-Scholes — K20 Results

Speedup over Sequential

10%

10!

100

CUDA Results

[=8~ OpenACC —m~ HMPP e~ CUDA —e= OpenMP

Number of Options

Speedup over Sequential

10%

10!

OpenCL Results

‘ =~ OpenACC == HMPP == OpenCL == OpenMP

Number of Options

Application Results
0®0000

NVIDIA K20 Results

Black-Scholes — K20 Results

@ CUDA outperformed OpenCL on NVIDIA K20
@ 461x speedup for CUDA
@ 446x speedup for OpenCL
@ HMPP and OpenACC targeting the same language achieved
near-identical speedup
@ HMPP and OpenACC targeting OpenCL was faster than
targeting CUDA

@ 369x speedup for CUDA
@ 380x speedup for OpenCL

Application Results
00®000

NVIDIA K20 Results

Monte-Carlo — K20 Results

CUDA Results OpenCL Results
‘-.— OpenACC == HMPP —@= CUDA =a= OpenMP ‘ =8— OpenACC == HMPP —@= OpenCL =e= OpenMP
_ 103 | _ 103 ¢
8 [S
€ €
E r £
g 10} g 102}
0 £ %]
4] 3
> >3
o I o
S 10t S 10t
o £ //’H o //"
(1) O)
@ QJ
o o
2] w
| |
SIS IS IS IS IS S I T T I TSI SSTSSSS
PR LLLFLFLSSLSSLSSSS PR LFLLFLFLSFSLSL,SS S
NP PO LRSS LSLSSLSS NP PSS LSLSSSLS S
MY LS S S QWQQC)Q '»'»‘o.@,&@\,@w@%@
Number of Samples Number of Samples

Random Number Generation:

@ C/OpenMP — rand

@ CUDA — cuRand

@ HMPP/OpenACC/OpenCL — Mersenne Twister
Dropoff in speedup for CUDA = cache misses

Application Results
0o00e00

NVIDIA K20 Results

Monte-Carlo — K20 Results

@ Manual CUDA outperformed manual OpenCL
@ Up to 1006x vs 180x

@ HMPP and OpenACC performed similarly

@ Targeting CUDA was faster than targeting OpenCL
@ Upto 162xvs up to 130x

Speedup over Sequential

Application Results

[elejele] Jo]

NVIDIA K20 Results

Bonds and Repo — K20 Results

Bonds (CUDA)

‘ =8— OpenACC == HMPP —=@= CUDA —e= OpenMP

Speedup over Sequential

Number of Bonds

Problem: Generating OpenCL code from HMPP and OpenACC

Repo (CUDA)

‘-.— OpenACC == HMPP =@= CUDA =a= OpenMP

Number of Repos

Application Results
oooooe

NVIDIA K20 Results

Bonds and Repo — K20 Results

@ Bonds: Up to 87.9x speedup
@ Repo: Up to 94x speedup

@ HMPP and OpenACC versions produced near-identical
execution time

@ HMPP and OpenACC versions ran within 2% execution time as
manually-written CUDA

@ Speedup flattened as problem size increased beyond 100,000
Bonds and 2,000,000 Repos

Auto-Tuning

Outline

e Auto-Tuning
@ Framework
@ Results
@ Alternate Architectures

Auto-Tuning
[I}

Framework

Auto-Tuning Framework

@ Goal: achieve maximum speedup by applying a set
optimizations (while preserving accuracy)

@ Collection of python scripts initially provided by CAPS
Entreprise

@ Injects code optimizations into annotated source code
@ blocksize — thread block dimensions on GPU
@ unroll — loop unroll factor; can be used with
contiguous or split
o tile— looptiling factor
@ remainder/guarded — used for unrolling to specify
remainder loop or conditional check, respectively

@ Framework generates a set of new HMPP source files

Auto-Tuning
oce

Framework

Annotated Source Code Sample

%(blocksizePragma)
%(unrollTilePragma_iLoop)
%(parallelNoParallelPragma_iLoop)
for (i = 0; i1 < NI; ++i) {
%(unrollTilePragma_jLoop)
%(parallelNoParallelPragma_jlLoop)
for (j = 0; j < NJ; ++j) {
c[i1[j] *= p_beta;
%(unrollTilePragma_kLoop)
%(parallelNoParallelPragma_kLoop)
for (k = 0; k < NK; ++k) {
temp = p_alpha x a[il[k] * b[k]l[j];
c[i1[3] += temp;
}
}
}

@ unrollT1ilePragma — specify loop unroll/tile factor with options
@ parallelNoParallelPragma — specify whether to parallelize or not
@ blockSizePragma — use determined block size

Results

Auto-Tuning Results

Auto-Tuning
°

. L. s e . Speedup
Application Thread Block | Loop Optimizations (Default)
Black-Scholes 369x
2X4 No tili li
5,000,000 Options 3 o tiling /loop unrolling (369%)
Tile ‘main’ loop w/ factor 3
Monte-Carlo 39X2 and ‘path’ loop w/ factor 4, 265x
400,000 Samples both with ‘contiguous’ and (152x)
‘guarded’ options
Bonds .) 89.7x
1,000,000 Bonds 32X2 No tiling / loop unrolling (87.1x)
Unroll inner ‘cash flows’
R 7.
epo 32X2 loop w/ factor 2 using ‘split’ 97.6x
1,000,000 Repos (91.2x)

and ‘guarded’ options

Auto-Tuning
°

Alternate Architectures

Running Optimized Code on Alternate Architectures

@ Run the auto-tuned code on various architectures

@ Compare speedup of best auto-tuned code of one architecture
on other architecture

@ All code paths executed on C1060, C2050, and GTX670

Run on C2050 Run on GTX 670
]DD Best K20 [l I Best C2050 \]DD Best K20 [l 1 Best GTX670 \

[\)

[\)

[a)
—
—
Speedup over default
) =
—
—

Speedup over default

Conclusion

Outline

© conclusion
@ Future Work
@ Final Notes

Conclusion
°

Future Work

Future Work

@ Target different architectures
@ AMD GPUs
@ Intel Xeon Phi
@ Heterogeneous systems
@ Parallelize more code paths in QuantLib

@ Parallelize additional financial applications outside of
QuantLib

Conclusion
°

Final Notes

Final Notes

Successful parallelization of four QuantLib code paths
Achieve up to a 1000x speedup by targeting CUDA manually

o
°
@ Achieve up to a 370x speedup by using HMPP and OpenACC
@ Achieve up to a 74% speedup when auto-tuning

°

Source code for codes in this presentation will be available at
www.sourceforge.net/projects/quantlib-gpu/

Funding Acknowledgement:
This work was funded in part by JP Morgan Chase as part of the
Global Enterprise Technology (GET) Collaboration

www.sourceforge.net/projects/quantlib-gpu/

	Introduction
	QuantLib and Financial Applications
	Directive-Based Acceleration

	Experiment Setup
	Source Code Modifications
	Compilation
	Execution Environment

	Application Results
	NVIDIA K20 Results

	Auto-Tuning
	Framework
	Results
	Alternate Architectures

	Conclusion
	Future Work
	Final Notes

